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Disclaimer 
 
This document was prepared as an account of work sponsored by an agency of the 
United States government. Neither the United States government nor Lawrence 
Livermore National Security, LLC, nor any of their employees makes any warranty, 
expressed or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United 
States government or Lawrence Livermore National Security, LLC, and shall not be 
used for advertising or product endorsement purposes. 
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Abstract 
 
We conducted a feasibility study to research modifications to data-flow architectures 
to enable data-flow to be distributed across multiple machines automatically.   
Distributed data-flow is a crucial technology to ensure that tools like the VisIt 
visualization application can provide in-situ data analysis and post-processing for 
simulations on peta-scale machines.  We modified a version of VisIt to study load-
balancing trade-offs between light-weight kernel compute environments and 
dedicated post-processing cluster nodes.  Our research focused on memory 
overheads for contouring operations, which involves variable amounts of generated 
geometry on each node and computation of normal vectors for all generated 
vertices.  Each compute node independently decided whether to send data to 
dedicated post-processing nodes at each stage of pipeline execution, depending on 
available memory.  We instrumented the code to allow user settable available 
memory amounts to test extremely low-overhead compute environments.  We 
performed initial testing of this prototype distributed streaming framework, but did 
not have time to perform scaling studies at and beyond 1000 compute-nodes. 
 
Introduction/Background 
 
As the scientific simulation community starts using petascale computers, the amount 
of data produced by these simulations will be staggering. Interactively visualizing 
and analyzing this large data in a traditional manner is often difficult, primarily 
because I/O bandwidth is relatively small. One approach to this problem is to 
process the data in situ, meaning that the simulation code itself is coupled with 
visualization and analysis algorithms, which operate on the data without it ever being 
written to disk. However, it is important to consider the memory footprint of these 
algorithms. Scientific simulations typically saturate the supercomputer’s primary 
memory and can only spare a relatively small buffer for visualization and algorithms.  
To overcome the memory footprint problem, we propose a modification to the 
standard in situ paradigm. Our proposed system does distributed in situ 
visualization, meaning that some visualization work is done on the supercomputer 
and the rest is sent to a small, dedicated cluster. The driving principle behind this 
design is to maximize how much work is done by the many processors on the 
supercomputer, but, at the same time, enable the memory footprint on each these 
processors to remain low.  
An important motivation for this design lies in the heterogeneous nature of work 
each processor has to do. Scientific simulations often parallelize by partitioning space 
into “domains,” and assigning one domain to each processor. When running in situ, 
each processor operates only on that processor’s domain. But the amount of work to 
be performed on a given domain will often vary greatly from processor to processor. 
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For example, if the goal is to calculate an isosurface, many of the domains may not 
intersect the isosurface. The isosurface on these domains can be calculated quickly 
and with minimal memory footprint overhead. But other domains may contain many 
intersections with the isosurface and produce many facets. These facets may exceed 
the memory budget from the simulation, meaning the work could not be done in situ. 
We address this problem by identifying the domains that will generate many facets 
and sending them to a dedicated post-processing resource.  
In-situ processing and postprocessing with dedicated resources have typically been 
viewed as an “either-or” proposition. With this architecture, we introduce a hybrid 
approach that allows the two traditional approaches to be viewed as extremes on a 
spectrum (see figure 1). We believe portions of the spectrum covered by the hybrid 
space are significant because it responds to the trend in supercomputing platforms 
towards low memory footprint, which in turn hampers in situ processing.  
 

 
Figure 1 

 
 
Related Work 
 
Ma et. al. [2] conjecture that in-situ processing is the most plausible solution to the 
problem of visualization and analysis at peta and exa scale and produce a 
preliminary study of strategies to implement an in-situ based visualization system.  
 
Ma et. al. [4] examines three areas related to visualization and analysis at peta scale 
and beyond. They present a study of the relative costs of I/O, rendering, and 
compositing for a volume rendering application. They investigate the implications of 
eliminating the processing from the workflow and examine a technique that uses 
data reorganization to improve access times for the volume rendering use case. In 
contrast, the present work regards data reorganization as a technique that is not 
generally applicable to the case of a running simulation. Our approach is also 
directed at a larger set of use-cases spanning standard visualization to more costly 
and intensive analysis in which derived fields and user expressions are used to 
extract meaning from data.  
 
In a related work, Ma et. al. [3] describe large scale volume rendering on the Blue 
Gene/P architecture. They study the relative costs of various strategies for obtaining 
scalable volume rendering, as a stand-in for other visualization and analysis tasks. 
Their goal was not to obtain the fastest results, but to understand the trade-off 
between using compute hardware and dedicated assets with hardware accelerated 
capabilities. They present data from several experiments studying several 
parameters such as data set size, number of processors, offline storage of results 
and streaming of images for remote display. Their overall conclusion is that a 
BlueGene/P type architecture is a viable platform for some types of processing at 
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extreme scales. The approach of the present paper agrees with this assessment, but 
goes further in stating that rendering performance is only one criterion for determine 
the proper approach for peta and exa scale visualization and analysis. In this paper 
we study a more general visualization query that combines several operations in a 
data flow architecture that is closer to how users typically investigate a large 
simulation. 
 
Research Activities 
 
As most of the major visualization packages use data flow networks, we 
implemented our system in such a framework inside the VisIt visualization 
application. When a user constructs a desired visualization through the user 
interface, corresponding data flow networks are constructed on both the in-situ 
machine and on the dedicated machine. These networks are identical and the only 
thing that differentiates them are the portions of the data set they operate on. 
Furthermore, filters on the in-situ machines are modified to contain a “predictor” 
module and filters on the dedicated machine are modified to contain a “receiver” 
module. The predictor module determines if its accompanying filter is in danger of 
exceeding the memory budget. If so, the data set is from the in situ machine to the 
dedicated machine. Each processor from the in-situ machine initially operates on 
that processor’s domain from the simulation code. Each processor from the 
dedicated machine initially starts with no data. Execution then proceeds as follows:  

1. For each filter in the pipeline  
– If the filter is on the in-situ machine  

(a) If the predictor module returns true  
1. Send the input to the filter to the dedicated machine  
2. Cease all further processing on this node  

(b) If the predictor module returns false  
1. Execute the filter  
2. Proceed to next filter in the pipeline 

– If the filter is on the dedicated machine  
1. Execute receiver module. If data is sent from an in situ 

processor, then add that data to this filter’s input (which  
– may have started as empty).  
– (b) Execute the filter  
– (c) Proceed to next filter in the pipeline  

2. Transfer any remaining data from the in situ machine to the dedicated 
machine  

3. Perform all rendering on the dedicated machine  
 
To provide more clarity about the design, consider the following notional example in 
figure 2 
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Figure 2 

In this example there are five processors on the in situ computer and two on the 
dedicated computer. For the first processor (red), the first filter’s predictor returns 
false, allowing that domain to remain on the in situ computer. It then executes the 
first filter. The second filter’s predictor returns true, meaning that the data should be 
sent to the dedicated computer. The dedicated computer receives this data set as 
input to the corresponding filter in the pipeline and processes it for the rest of the 
time, including rendering. For the second processor (green), the data set remains on 
the in situ computer for an additional filter. When it is sent to the dedicated 
computer, the data is processed alongside the “red” domain’s output from the 
second filter. The rest of the processorsare similar, with a few subtleties. The third 
processor (blue) is allowed to move through the entire pipeline by its predictors, and 
thus has to use the transfer module. The fifth processor (purple) is forced by the 
very first predictor to send its data to the dedicated computer, meaning no work is 
done in situ for that domain.  
 
Once a processor from the in situ machine sends its data to the dedicated machine, 
we can no longer utilize any of its processing power. Thus we value keeping data on 
the in situ machine for as long as possible. So the predictor module is based solely 
on memory footprint. Our predictor modules calculate the increased memory 
footprint that would come about as a result of execution. They then compare that 
with the current memory budget. If the new footprint would exceed the budget, then 
they return true, else false.  
 
Each filter needs a specialized predictor. The predictor for the filter that calculates 
the surface normals to provide good shading is easy to implement. This simply 
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returns the three times the number of points times the size of a floating point 
number in bytes. The predictor for a contouring filter is much harder. We solve this 
problem by performing a “false contour” where statistics are taken, but no data is 
generated. This is obviously a non-optimal approach, but we believe it is not quite as 
bad as it appears at first glance because there is so much compute power on the in 
situ machine. More efficient and accurate predictors for various filters would be a 
good area of future work.  
 
Results/Technical Outcome 
 
We developed a prototype of the above system by modifying VisIt, a popular and 
open source visualization application authored primarily at Lawrence Livermore 
National Laboratory.  We introduced multiple socket connections between VisIt 
compute engines, which are the processing component that is attached to the 
simulation code or running on the dedicated post-processing resource.  We modified 
the core execution methodology of VisIt processing pipelines, and introduced 
predictors for a small set of VisIt processing modules. 
 
These modifications entailed deeper changes in the pipeline execution algorithm than 
originally planned, but since this project was tasked with experimenting with a 
distributed in-situ design that could be used in existing post-processing tools, we felt 
that this extra effort was worthwhile.  The research prototype executes as expected.  
The performance of distributed operations was slower due to the time required to 
send data over sockets, and to queue up socket sends for multiple processors on the 
compute nodes to a single post-processing node.  
 
We performed an initial performance study on the last time step of a Rayleigh-Taylor 
turbulence simulation.  The pipeline consisted of contouring the density field, normal 
vector computation, and rendering. The data set consisted of 1152x1152x1152 
samples on a regular grid.  The data stored in a 9x9x9 array of 128x128x128 blocks.  
We studied ratios of 4-to-1 and 8-to-1 between compute nodes and post-processing 
nodes.  In these studies, the compute nodes read the data from disk instead of 
accessing it in memory from  a simulation code.  An ‘available memory’ parameter 
was coded that caused the  compute nodes for some blocks to send data earlier to 
the post-processing nodes.  In all studies of up to 72 total processors the time 
difference between zero available memory and no limit on available memory was 
negligible.  The reason for this was that the small number of processors caused most 
of the time to execute the pipeline to be spent in data read and actual computation.  
The data transfer over the socket was not of the same scale.  We did not have time 
to pursue dedicated application time to perform studies of 1000 or more processors, 
but we expect the difference in performance to be greater in that case, in part due to 
greater contention for post-processing resources, and because compute and disk 
read will be spread over more processors. 
 
The system is designed to trade performance degradation for the ability to perform 
post-processing at all.  That is, we expect that some queries will cause the in-situ 
computation to run up against memory requirements and thus our technique may be 
the only way to enable in-situ computation in those cases.  Our sockets based 
approach may need to be modified on future architectures, in particular, replacing 
sockets with MPI on machines that have an integrated visualization partition. 
 
Exit Plan 
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We expect to use a small amount of existing ASC Pre and Post Processing 
Environment funding to perform scaling studies of the research prototype.  In 
addition, some parts of the prototype, including the socket communication 
infrastructure, may be introduced into the main VisIt distribution. 
 
Summary 
 
The successful conclusion of this project enabled an initial investigation of distributed 
data-flow architectures for the VisIt application framework and provided important 
information for future efforts in in-situ analysis and visualization on peta-scale 
systems. 
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